CONSIDERATIONS CONCERNING THE TRANSCALCULUS OF THE COORDINATES IN STEREO 1970 PROJECTION FROM KRASOVSKI ELLIPSOID TO THE WGS 1984 ELLIPSOID

Mădălina AUGUSTIN¹, Andreia COSTACHE¹, Timea IZSAK¹, Ionuț SILAGHI¹, Alexandru PORUMB¹

Scientific Coordinators: Assist. PhD. Eng. Tudor SĂLĂGEAN², Lect. PhD. Eng. Sanda NAȘ¹

¹Technical University Cluj-Napoca, 28 Memorandumului Street, 400114, Cluj-Napoca, Romania,

Phone: +40264.401.200, Fax: + 40264.592.055, Email: madeline_mcd@yahoo.com ² University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăştur 3-5, 400372, Cluj-Napoca, Romania | Tel: +40-264-596.384 | Fax: +40-264-593.792 Email: salagean_tudor@hotmail.com

Corresponding author email: madeline_mcd@yahoo.com

Abstract

The paper presents the transformation of the national system of reference coordinates, STEREO 1970, in the European reference system, WGS 1984, using constant coefficients method. It also presents the difference between the coordinates obtained by the method mentioned above and the results obtained by using TransDatRO program, authorized by ANCPI, application for converting coordinates of STEREO 1970 into ETRS 1989 system, currently used to the whole European continent for GPS measurements.

Key words: transcalculus, coordinates, WGS 84, Krasovski.

INTRODUCTION

Once with the adherence of Romania to the European Union, a problem has risen regarding the shift from the national system of projection to the european one, with the purpose of creating an unitary reference system for the whole european continent.

The projection system used in Romania is the STEREO 1970, which has the Krasovski ellipsoid as reference ellipsoid. The central point of this projection has the coordinates $B=46^{\circ}$, $L=25^{\circ}$ and it is situated near Făgăraş city. In order for our country to have only positive coordinates, the reference ellipsoid is translated to SW such that the origin of the system has the coordinates x=500000 m, y=500000 m.

MATERIALS AND METHODS

The WGS 1984 reference system was created principally for navigation where precision is of 1 m or less. Because of the low precision of the system, ITRS was created, system used for international geodetic determinations, with a higher precision. In concordance with the permanent movement of the continents, which are approaching and moving away from each other with approximately 12 cm/year, the ETRS 1989 was created, standard system used for the GPS measurements in whole Europe. This system is based on the ITRS, the more precise version of WGS 1984, but it changes permanently the origin towards the reference system WGS 1984, that will result in the appearance of differences of the level of seconds.

RESULTS AND DISCUSSIONS

This case study was based on the points' CSA97 and B1 coordinates from Maramures obtained GPS zone, coordinates by measurements in WGS 1984 reference system. The purpose of the paper is to verify these measurements with method the of transcalculus using constant coefficients, and also verification of the obtained results, with TransDatRO software, transcalculus software authorised by ANCPI.

The first part of the case study contains the transformation of plane coordinates STEREO

70 in geographic coordinates WGS 84, using the constant coefficient method.

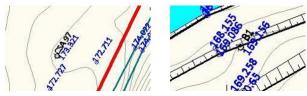


Figure 1. Points represented in plane

The first step, in order to do the transcalculus, consists in reducing the Stereographic coordinates to the origin of the coordinate system situated in the projection pole:

$$\Delta x_i = X_i - X_0$$
$$\Delta y_i = Y_i - Y_0$$

Second step consists in passing the stereographic coordinates from the secant plane to the tangent plane (Table 1).

$$\begin{aligned} x_{\text{tan}} &= \Delta x_i \cdot c \\ y_{\text{tan}} &= \Delta y_i \cdot c \end{aligned}$$

where:

$$c' = \frac{1}{c} = \frac{1}{c} = 1.000250063$$

c' – transformation coefficient from tangent plane in secant plane.

Table 1. Transformation of coordinates from secant plane is tangent plane

Point	Stereographic coordinates		t origin of th	educed to he le coordinate stem	<u>Coord</u> , in tangent plane	
	Х	Y	Δ Δ Xi Yi		Xta	Yta
CSA97	659525,955	373101,293	159525,955	-126898,707	159565,8465	-126930,4396
В 1	659982,537	373383,766	159982,537	-126616,234	160022,5426	-126647,896

Then the coordinates transformation from tangent plane on the WGS84 ellipsoid with the help of the constant coefficients calculated by

 $f = x_{tan} \cdot 10^{-5}$ C. Moldoveanu. It is determined first the $l = y_{tan} \cdot 10^{-5}$ values of f and l parameters, and then the value of vectors f and 1 is calculated.

Table 2. Vector f calculation

	Point	Point
	CSA97	B1
f	1	1
f	1,595658465	1,600225426
f	2,546125936	2,560721415
f	4,062747401	4,097731518
f ⁴	6,48275728	6,557294166
f	10,34426653	10,49314885

Table 3. Vector l calculation

	Point	Point				
	CSA97	B1				
10	1	1				
12	1,61113365	1,603968955				
14	2,595751638	2,57271641				
1°	4,182102811	4,126557253				

Next step consists in summing the products of the elements of vector f with the elements of the first, second, third and the fourth column respectively from the first transformation coefficients table $(x, y)_{stereo1970} \rightarrow (B, L)_{WGS \ 1984}$ (Table 4).

Table 4. First transformation coefficients table $(x, y)_{stereo1970} \rightarrow (B, L)_{WGS 1984}$

A00	0	A02	-26,246618253	A04	0,003312513	A06	-0,0000002
A10	3238,8279765	A12	-0,620236752	A14	0,000173545		
A20	-0,256073492	A22	-0,009981972	A24	0,0000057		
A30	-0,066220292	A32	-0,000189282				
A40	0,0000312629	A42	-0,000033				
A50	0,0000024216						

In order to obtain the latitude difference in sexagesimal seconds the following relationship is used:

$$\Delta B = f^* \cdot A \cdot l_{(6,1)} (6,4) (4,1)$$

The latitude of the point is obtained with the formula:

$$B = B_0 + \Delta B$$

 $B_0 = 46^\circ$ (the center of projection latitude for the STEREO 70 projection case).

	Point CSA97	Point B1
R1	5167,142472	5181,928024
R2	-43,9235473	-43,73300784
R3	0,009354943	0,009274178
R4	-0,0000083642	-0,0000082531
$\Delta B = \Sigma R$	5123,228279	5138,20429
B ₀ "=B ₀ ·3600	165600	165600
$B_0 + \Delta B$	170723,2283	170738,2043
$\underline{B^{\circ}=(B_{0}+\Delta B)/3600}$	47,42311897	47,42727897
В	47.25.23,22827899	47.25.38,20428966

Table 5. Calculation of latitude B

For the calculus of longitude, vector l has the following form:

$$l = \begin{bmatrix} l \\ l^3 \\ l^5 \end{bmatrix}$$

Table 6. Vector l calculation

	Point	Point
	CSA97	B1
11	-1,269304396	-1,26647896
13	-2,045019025	-2,031392934
1 ²	-3,294798965	-3,258291203

The products between the elements of vector f with elements of the first, second and third column recpectively from the second table and the transformation coefficients $(x, y)_{stereo1970} \rightarrow (B, L)_{WCS}$ 1984 are summed up.

Table 7. The second table with the transformation

coefficients $(x, y)_{stereo1970} \rightarrow (B, L)_{WGS 1984}$

	coefficients		5,0001970		1901
B01	4647,362095	B03	-0,502105603	B05	0,0001124789
B11	75,322023692	B13	-0,0290014238	B15	0,0000112
B21	1,5063168091	B23	-0,0011247887		
B31	0,0290014238	B33	-0,0000365		
B41	0,0005623				
B51	0,000011				

The operations described before are used. The longitude of the point is obtained with the following relation:

$$L = L_0 + \Delta L$$
$$\Delta L = f^* \cdot B \cdot l$$
$$_{(1,1)} = f^* \cdot B \cdot l$$
$$_{(6,1)} (6,3) (3,1)$$

 $L_0 = 25^{\circ}$ (the longitude of the point at the center of projection, in STEREO 70 case).

Table 8. Calculation of L longitude

	Point CSA97	Point B1
L ₀ "=L ₀ ·3600	90000	90000
$L_0''+\Delta L$	83944,63215	83957,64169
<u>L°=(L₀"+ΔL)/3600</u>	23,31795337	23,32156714
L	23.19.04,632146862	23.19.17,64168915

The second part of the case study has the role of verifying the results obtained in the first part, using the reverse transformation method namely the geodetic coordinates transcalculus in plane coordinates.

The calculation method is analogue to the first part, just that for the calculus of coordinate x the following values are obtained first:

$$f = \Delta B' \cdot 10^{-4} = (B - B_0)' \cdot 10^{-4}$$
$$l = \Delta L' \cdot 10^{-4} = (L - L_0)' \cdot 10^{-4}$$

B, L- latitude respectively longitude of the point obtained in the first part;

B₀, L₀- latitude respectively longitude of the projection center.

	Point	Point		Point	Point
	CSA97	B1		CSA97	B1
B"=B·3600	170723,2283	170738,2043	L"=L·3600	83944,63215	83957,64169
$B_0''=B_0.3600$	165600	165600	$L_0'' = L_0 \cdot 3600$	90000	90000
$\Delta B''=B''-B_0''$	5123,228279	5138,20429	$\Delta L''=L''-L_0''$	-6055,367853	-6042,358311
$f = \Delta B'' \cdot 10^{-4}$	0,512322828	0,513820429	$l=\Delta L'' \cdot 10^{-4}$	-0,605536785	-0,604235831

Table 9. Calculation of f and l values

Next, the calculation of f and l vectors (like in the case of latitude determination) and making

the calculation which will lead to the obtaining of x coordinate in tangent plane. In

order to obtain the x coordinate in secant plane, the x coordinate is multiplied with the transformation coefficient c=0.99975. For y coordinate, the values of vectors f and 1 are calculated and then we proceed as in the case of x coordinate determination. In order to perform these verifications, the values from the constant coefficients tables are used for transforming geodetic coordinates in plane coordinates.

Table 10. Coefficients for $(B, L)_{WCS \ 1984} \rightarrow (x, y)_{Stereo1970}$ transfomation

a00	0	a02	3752,083	31113	a04	0,3	3359081	a06	-0,0000576
a10	308753,6625	a12	-99,9263	34165	a14	-0,06	5222767		
a20	75,36803068	a22	-6,6747	6642	a24	0,0	0002361		
a30	60,21520616	a32	-0,0713	0343	a34				
a40	-0,014859	a42	-0,002	5911					
a50	0,01426069								
a60	-0,0215834								
b01	215175	,8308	b03	-2	23,21	34706	b05	-(0,00864536
b11	-10767,6	5395	b13	-1	,928	07416	b15		0,0004969
b21	-128,658	1996	b23	0),131(50763			
b31	-2,1060	5469	b33		0,002	23711			
b41	-0,049	5315	b43		-0,0	00083			
b51	0,000	4263							

After the above verification the coordinates from which we started in the first part were obtained.

	Point	Point				
	CSA97	B1				
$\Delta x = \Sigma R$	159525,954	159982,536				
<u>X</u> 0	500000	500000				
х	659525,954	659982,536				
$\Delta y = \Sigma R$	-126898,7068	-126616,2338				
<u>v</u> 0	500000	500000				
у	373101,293	373383,766				

Table 11. Calculation of plane coordinates x, y

The last part of the case study contains the transformation of CSA97 and B1coordinates obtained by GPS measurements, with the help of the transcalculus software, TransDatRO and the comparing of the results given by the software, with the data obtained from the above calculations.

Figure 2. Transformation of coordinates points CSA97 şi B1 with TransDatRO software

CONCLUSIONS

In order to transform the coordinates in Stereo1970 projection from the Krasovski ellipsoid to the WGS ellipsoid and viceversa, from the WGS ellipsoid to the Krasovski ellipsoid, the constant coefficients method can be used. Regarding the coordinates transcalculus from Stereo 1970 projection projection ETRS89 in the system, currently used in Europe, TransDatRO is used, transcalculus of coordinates software, created by ANCPI. The working principle of this software is based on transformation parameters that creates a link between the reference system and the (CRS-Coordinate coordinates Reference ETRS89 (European System) Terrestrial Reference System) with the afferent ellipsoid GRS80 and the national reference system S-42 with the afferent Krasovski 1940 ellipsoid.

REFERENCES

- Constantin Moldoveanu, Geodezie, Editura Matrix, București, 2006
- Ortelecan Mircea, Geodezie, Editura AcademicPres, Cluj-Napoca, 2006
- http://www.ancpi.ro/pages/wiki.php?lang=ro&pnu=trans formariCoordonate
- http://ro.wikipedia.org/wiki/Proiec%C5%A3ia_Stereogra fic%C4%83_1970-
- http://topograf.3xforum.ro/post/192/1/Sistemul_de_coor donate_ETRS89/-