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Abstract

It is common belief that the first person in history who ever used infinite series approximations to trigonometric functions
was the Indian mathematician Madhava (1340-1425 bC), the founder of the Kerala astronomy school, who deduced some
approximation formulas for trigonometric functions by geometric arguments.

In the West, the intuitive idea of more general Taylor series was given by the Scottish mathematician James Gregory, but
they were formally introduced by the English mathematician Brook Taylor in 1715. Taylor series centered at 0 are also
called Maclaurin series, in the honour of the Scottish mathematician Colin Maclaurin, who extensively used this special
case in his works in the 18th century. The partial sums of a Taylor series are called Taylor polynomials. The Taylor series
are very powerful methods used to function approximations (numerical approximations, integrals, differential equations,
asymptotic calculus). In this article we use the asympthotic expressions of Taylor series in order to calculate function
limits.
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INTRODUCTION derivable on (a, b). If f(a) = f(b), then there
exists ¢ € (a, b) suchthat f'(c) = 0.

y f«

First, we present without proof some classical
derivability theorems.

Theorem 1 (Fermat's theorem, Boboc, 1998).
Let f:(a,b) - R be a derivable function. If
Xo € (a,b) is an extremely local point of f,

then f'(x,) = 0. | ‘ P
Ol a c ¢c" b

Figure 2. The geometrical interpretation of Rolle’s

A : theorem
B - - - - -
1 Remark 1. This point ¢ is not necessarily unique,
X - -
Olax x2 T T as shown in the picture above.
Fiqure 1. Th ol o of E ) Theorem 3 (Lagrange's mean value theorem).
'gure =. The geometrt'ﬁgo;grtﬁrpretat'on of Fermat’s Let f:[a,b]> R a continuous function,

derivable on (a, b). Then there exists c € (a, b)
The point x; is a minimum and the x, is a  such that % = f'(0).

maximum on (a,b). The graph tangents at the  |f we denote A(a, f(@)) and B(b,f(b)),
abscissa points x; and x, are horizontal. - _
SCISSa poINtS x; and xz 12 then f@f’;(b) represents the slope of the line

a
Theorem 2 (Rolle's theorem, Colojoara, 1983).  ABand f'(c) represents the slope of the tangent
Let f:[a,b] >R a continuous function, to the graph in point C(c,f(a)) . Then, the
conclusion of Lagrange's theorem is expressed
geometrically by the existence of a point (at
103



least) where the tangent to the graph is parallel
to the line joining the ends of the graph.
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Figure 3. The geometrical interpretation of Lagrange’s
theorem

Theorem 4 (Cauchy’'s mean value theorem).
Let f:[a,b] = R a continuous function,
derivable on (a, b), with g'(x) # 0, for all x €
(a, b). Then there is ¢ € (a, b) such that
f@-fm) _ fr(c)
g@-gd) gy

TAYLOR SERIES

Definition. Let I < R be an interval, f € C™(I)
(n times derivable on I, with the n-th derivative
continuous) and x, € I, fixed. It is called the
Taylor polynomial of degree n, attached to the
function f at the point x,, the polynomial:

n
O (x)
Tog,xy = Tnf,zo () = Z k! : (x — x,)"

k=0
= f(x0) + f'(x0)(x — x0)

_I_f ;TO)( X)) 4
(m)
1 nﬁx") (x — xo)"

Remark 2. For simplicity, we will denote
T f, x, (X) bY Ty (x) OF T,.

Definition 1. With the previous notations,
R,(x) = f(x) — T,,(x) is called the reminder of
order n associated to the function f at the point
Xg.

Remark 3. We have f(x) =T,(x)+ R,(x)
and, if rlflﬁ R,(x) = 0, then

)
f(xr)l =Oolim T,(x) = Z ! n(!xO) (x — xo)"
n=0
= f(xo) + f'(xo)(x — x0) + ! Z(TO) (x —x0)* +
)
+...+f ('xO) (x—xo)”+---
n!
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(the development in Taylor series centered at
X = Xg).

Theorem 5 (Taylor's theorem with
Lagrange's remainder, Nicolescu etal., 1971).
Let I c R be aninterval, f € C"*1(I) and x, €
1. Then, there exists c, € (x, x,) such that:

F ()

o &

f@) = Tu(0) +

Remark 4. In fact ¢, € (x,xy) or ¢, € (xg, %), In
a convenient order.

Proof. By mathematical induction. For n = 0,
the statement becomes: f(x) = f(x,) +
f'(c)(x — xp), for some ¢, € (x, xy) , which is
true from Lagrange's theorem.

n — 1 — n: Suppose the statement is true for
n—1 € N. Thus, for any function g € C™(I),
there exists d,, € (x,x,) such that:

(n)
960 = Tooa () + L

We denote U(x) = f(x) — T,(x) and V(x) =
(x — x4)™*1. We obtain:

fO)-T() _UG) _ U@ - U _ U'(dy)
C—x™ V) VO -V(x) V()

_ f,(dx) B Tn—l(dx) _ f(n+1)(cx)

BRCT (¢ A vy TR

where d,, € (x,xg) and ¢, € (d,, xp) © (x, %)
(we have applied the theorem of Cauchy for the

functions U(x) and V(x)the induction
hypothesis for g = f ' € C™(I)).
Remark 5. Taylor’s theorem is the

generalization to the order n of Lagrange’s
theorem.

Definition 2. A Taylor series development at
Xo = 0is called Maclaurin series:

FO0
f(X) = Z oy X
n=0
n (n)
= f(0) + f'(0)x +f 2('0)x2 + ..-+f n,(O)x” +



The list of Maclaurin series for some common

functions:

The Exponential function:

xTL

n!
n=0

x? x3 x*
=1+x+ o+

TIARET x€ER

The Logarithmic function:

xn
In (1 + %) =Z(—1)n+1—
n=1 n
x? x3 x*
x-St

>t 372 x € (—1,1]

The Binomial function:

1+x)*= Z Cix™

n=0
ala—1) 5
=14+ax+ x“+...

where C,‘f _ a(af—l).;('a—n+1).

Particularly, for a = % we obtain:

\/1+x=(1+x)%

= 1+2x—§x +1—6x —.. ,x€(-1,1).
The Trigonometric functions:
2n+1
sinx = Z( T
x3 x5 x7
= x-_fﬂ-+-§T'_'7T4_ ,x € R.
2n
cosx = Z(— )ik 2]
nz=0
x? x* x®
=1 o1 +Z 6! + , X € R.
oy = Z Bon - (=4)"(1 — 4™M)x?" 1
gx= 2n)!
nz1
N e ( 7”T)
XT3 s XENTZ2

,x € (—1,1).

where B,, n € N, are the Bernoulli numbers,
defined by the equality

X B,
T
n=0
BZn+1 = 0' nz= 1'
B—lB—lB—lB—lB—1
0= LB ==5.B =B = —35,86 = 15
2n+1
arctg x —Z(— )n
n=0
x3 x> X7
=x—-———+———=++... ,x € [—1,1].
X 3 + z Z + x €[ ]
The Hyperbolic functions:
2n+1
A ey
Sx = 2n+ D!
x3 x5
_'X'+'§T'+'g74'——-F ,x € R,
" _e +e7*
chx = (Zn)'
n=0
B x? x4 x®
= 1'in'+'ZI-in"+”. ,x € R
Remark 6. ch?x — sh?x=1.
ELEMENTS OF ASYMPTOTIC
CALCULUS

Definition 3. Let f,g:1 - R. We say that
g(x) =o(f(x))atx = x, ifthereexists h:I —
R, such that gx) = f(x)h(x)
and lim h(x) = 0.

X—Xg

Remark 7. If f(x) # 0 on a neighborhood of x,
(excluding x,), then

M@=0U@D¢>ghﬁﬂ=0

Properties:

DOU@D=OU)¢HQ%K@=O;

2) o(f () + o(f () = o(f());
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3) g(x) - o(f () = o(f () g(x));
4) o(f(x)) - 0(g(0) = o((f(V)g(®) ;
5 a- o(f(x)) = o(f(x)), Va € R*.

APPLICATIONS TO THE CALCULATION
OF LIMITS

sinx

1) Prove that llm = 1.

Solution. We use the MacLaurin
developement for the function sin x at
xo = 0:
x3 x5 X7
sinx —x—§+§—7+

=x+o0(x)

sin x x+o(x)

Thus, =1+o(1) = 1.
X—

2) Compute Lim gex

Solution. We use the Maclaurin
developement for cos x at 0:
t =x+ i + 2 + -
gx=Xx 3 15 X 3
=x+ ? + o(x?)
So, we have
x3—3+0(x3) 1

=3t 33

tg(x)—x _
x3 - x3

1-cos x

3) Compute lzm

Solution. We use the

developement for cos x at O:

xZ x4 x6

cosx—1—5+z—a+

x?
= 1—7+0(x2)

Maclaurin

Thus, we obtain

2
X
7—0(352) 1

x2 x2

1—cos x _

o(1) —~.

x—0 2

4) Compute Lim ln(l; .

Solution. We consider the Maclaurin
developement for In (1 +x) at the

point O:
2 43 b
1 =X -t -t
n(1+x)=x 2+3 4+
=x+o0(x)
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Therefore, we have
In(1+x) _ x+o(x)
X

sin x—arctg x

5) Compute lim
x—0

x3
Solution. We use the Maclaurin
developement for the sin x and arctg x
at O:
x3 x5 X7
sin x —x—§+§—?+
x
=x——+ o(x?)
X3 x5 X7
tgx=x——+———++...
arctgx = x 3+53 7+
X
=x——+ o(x?)
Therefore,

sinx—arctgx _ x?—x?+0(x3)—o(x3) _

x3 x3
X3 3
6+o(x)=l_|_ (1)_>_

x3 x—06

(1+ x)%*-1

6) Show that lirroz = a, Where o €
X—

R.
Solution. We use the Maclaurin
developement for the power series

(1+x)“atO:
ala—1)
(1+x)“=1+ax+T
=14+ ax+o(x)

x%+...

So, for x =0, we have
1+ x)—1 ax+o(x)

X X
=a+o(l)—a.
x—0

7) Compute llm [— @ xl)z]

Solution. We have that
x2  x3  x*
*=1l+x+=+=+=+..,
2! 3! 4!

SO
(e" —1)? =
x? x3 x? x3
= <X+?+z+...>(x+?+z+...>

=x? + +7 + o(x*
=x? + x3 12x o(x*)



Thus, we obtain:

1 e* (e -1)2—x%e*

x2 (¥ —1)2 x2(e*—1)?

1 1
_ﬁx4+o(x4‘) _pto® 1

4 N T
x*+o(x?) 1+o0(1) x~012

4\ _ .4

8) Calculate lim SME)=*"

x—0 (x—sinx)*

Solution. We know that

3 5 7
_ X X
Sh(.X') —X+§+§+ﬁ...,

which implies that

For the denominator, one has:
3 4
(x —sinx)* = [% + 0(x3)]
1 4 xl2
= x12 [g + 0(1)] = + o(x1?)
Therefore, we obtain:
12
sh(x*)-x* xT"'O(xlz) _

(x-sinx)*

x12 12 -
6—4+O(.X' )

=+o(1)

— 63 = 216.

614+o(1) x—0
9) Compute lim V1+4x—1-sin(2x)
x—0 In(1+x2)
Solution. We have the following Taylor
developments at O:
1
V1+4x =1+ 4x)
=1+2x —2x% + 4x3+...
=1+ 2x — 2x% + o(x?)

4
sin(2x) = 2x — §x3+. .

= 2x + o(x?)

4 6
In(1+ x?) = x? —x?+x?..

=x? + 0(x?)
We obtain:
Vitdx—1-sin(2x) _ -2x%+o(x?)
In(1+x2) T x240(x2)
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__ —2+0(1)
T 1+0(1) x50

10)  Find the parameters a, b € R for
which lim (avx? + ax — bVx? + bx —

X—00

2x) = 1.
Solution. We replace x — oo with i where
y—=0,y>0. The initial limit

transposes into the following limit
where x - 0,x > 0:

3—1/(61\/1+ay+b\/1+by—2)yj>01.

y>0

For the sake of simplicity, we denote again
y by x. Thereby:

l(a\/1+ax+b\/1+bx—2)—>1.
X x—0

x>0

Using the Taylor developments at 0:

1
Vi+ax = (1+ax)2

=142 il 2+

= X~ g Xt
= 1+Ex—a—2x2+o(x2)
T2 8

VITbhx = (1 + bx)2

b 2
=14+-x——x>+...
+2x 8x+
_1+b b2 2+ (2)
= Zx 8x o\X
we must obtain:

L(a 14+ax+bvli+bx—2
~(av v

_a+b—2 a*+b?
= x + > +o(x) 331
x>0
This is possible if and only

if {a +b—=2=0 \hich represents a

a’?+b?=2
system of equations with the solutions
a=b=1.



CONCLUSION

Taylor series are a very powerful method to
solve difficult function limits.
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